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Abstract. This paper describes the use of motor primitives in robot learning from observation. Data is collected
while a human performs a task. This data is parsed into small parts of the task called primitives. Modules
are created for each primitive that encode the movements required during the performance of the primitive.
Another module encodes when and where the low-level primitives are performed. A learning agent then uses
these modules to perform the task. The feasibility of this method is currently being tested with an agent that is
being taught to play a virtual and a hardware marble maze game and a virtual air hockey game. It is also being
tested in teaching a humanoid robot to play air hockey against a human player.

1 Introduction

Human learning is often accelerated by observing a task being performed or attempted by someone else. If robots
can be programmed to use such observations to accelerate learning their usability and functionality will be in-
creased and programming and learning time will be decreased. This paper describes research that explores the use
of primitives in learning from observation. Our ultimate goal is to show that the use of primitivesaccelerates learn-
ing, and that primitives can be learned automatically by observing a teacher's performance. This paper describes
how a set of predefined primitives can be used in learning from observation.

Two environments, each with a virtual and aphysical implementation, will be described. One of the tasks is
playing air hockey. Figure 1 shows a virtual air hockey game that was created that allows a person to play against a
virtual player. Research in this environment is also being performed using a humanoid robot (www.erato.atr.co.jp/DB/)
and a camera based tracking system, figure 2. The air hockey playing agent learns its playing behavior from ob-
serving the human opponent.

The other task used in this research is a marble-maze game that has been implemented in a virtual environment
and a physical implementation figures 5 and 6. For the physical implementation a marble-maze game [13] has
been outfitted with stepper motors to move the board and a camera system to supply the position of the ball.
The movements of a human player can be captured and a computer can control the board. The methods used to
extract information from captured data and how the player agents use this information in these environments will
be described.

These domains were chosen because of the ease with which they can be simulated in virtual environments
and because they provide a starting point to obtain more information on learning from observation. Thephysical
environments are also small enough to be operated in a laboratory. Since the basic movements in these domains
are only in two dimensions, vision and object manipulation are simplified.

2 Primitives

Robots typically must generate commands to all their actuators at regular intervals. The analog controllers for our
30-degree of freedom humanoid robot are given desired torques foreach joint at420Hz. Thus, a task with a one
second duration is parameterized with30 � 420 = 12600 parameters. Learning in this high dimensional space can
be quite slow or can fail totally. Random search in such a space is hopeless. In addition, since robot movements
take place in real time, learning approaches that require more than hundreds of practice movements are often not
feasible. Special purpose techniques have been developed to deal with this problem, such as trajectory learning [1]
and learning from observation [4, 5, 9, 12, 6, 8, 10, 11].

It is our hope that primitives can be used to reduce the dimensionality of the learning problem [2, 15]. Primitives
are solutions to small parts of a task that can be combined to complete the task. A solution to a task may be made
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Fig. 1. The virtual air hockey environment. The disc shaped object near the centerline is a puck that slides on the table and
bounces off the sides, and the other two disc shaped objects are the paddles. The virtual player controls the far paddle, and a
human player controls the closer paddle by moving the mouse. The object of the game is to score points by making the puck
hit the opposite goal (the purple/light area at the ends of the board).

up of many primitives. In the air hockey environment, for example, there may be primitives for hitting the puck,
capturing the puck, and defending the goal. There are many possible primitives, and it is often possible to break a
primitive up into smaller primitives.

In this paper, a human, using domain knowledge, designs the candidate primitives that are to be used. Algo-
rithms have been created to segment the observed behavior into primitives. This segmented data is then used to
create modules that the agent uses to decide what primitive to perform and how to perform it.

3 Air Hockey

Air hockey is a game played by two people. They use round paddles to hit a flat round puck across a table. Air
is forced up through many tiny holes in the table's surface, which creates a cushion of air for the puck to slide
on with relatively little friction. The table has an edge around it that prevents the puck from going off the table,
and the puck bounces off this edge with little loss of velocity. Ateach end of the table there is a goal area. The
objective of the game is to hit the puck so that it goes into the opponent's goal area while also preventing it from
going into your own goal area. Previous researchers have used a camera based vision system to collect data in a
hardware implementation of air hockey [7, 14]. and a robot arm has been programmed to play air hockey on an
actual table [16,7].

Figure 1 shows the virtual air hockey game that can be played on a computer. The game consists of two paddles,
a puck and a board to play on. A human player using a mouse controls one paddle. At the other end is a simulated
or virtual player. The code can be obtained at www.cc.gatech.edu/projects/LearningResearch/. The movement of
the virtual player has very limited physics incorporated into it. The paddle movement is constrained to operate
with a velocity limit. Paddle accelerations are not monitored and therefore can be unrealistically large. The virtual
player uses only its arm and hand to position the paddle. For a given desired paddle location, the arm and hand are
placed to put the paddle in the appropriate location, and any redundancies are resolved so as to make the virtual
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Fig. 2.The hardware air hockey environment.

player look “human-like”. If the target is not within the limits of the board and the reach of the virtual player the
location is adjusted to a reachable point. The torso is currently fixed in space but could be programmed to move in
a realistic manner. The virtual player's head moves so that it is always pointing in the direction of its hand, but is
irrelevant to the task in this implementation.

The paddles and the puck are constrained to stay on the board. There is a small amount of friction between the
puck and the board's surface. There is also energy loss in collisions between the puck and the walls of the board
and the paddles. Spin of the puck is ignored in the simulation. The position of the two paddles and the puck, and
any collisions occurring within sampling intervals are recorded.

The hardware implementation, figure 2, consists of the humanoid robot and a small air hockey table. The robot
observes the position of the ball using its onboard cameras, figure 3, and hardware designed to track the position
of colored objects in the image. The humanoid's torso is moved during play to extend the reach of the robot. The
head is moved so that the playing field is always within view.

Human domain knowledge was used to define a set of primitives to work with initially. Three hit primitives are
shown in figure 4. The full list of primitives used is:

– Left Hit: the player hits the puck and it hits the left wall and then travels toward the opponent's goal.
– Straight Hit: the player hits the puck and it travels toward the opponent's goal without hitting the side walls.
– Right Hit: the player hits the puck and it hits the right wall and then travels toward the opponent's goal.
– No Hit: the player deliberately does not hit the puck.
– Prepare: movements made while the puck is on the opposite side from the player.
– Multi-Shot: movements made after a shot is attempted, but while the puck is still on the same side.

3.1 Selecting the Appropriate Primitive

The player agent must decide which primitive to perform for the observed state of the environment. The prepare
primitive is performed whenever the puck is on the side opposite the player. In all the remaining primitives the
puck is on the same side as the player, so selecting which of the other primitives to perform requires taking into
account the position and velocity of the puck.

A module was created to guide selection of primitives, incorporating prior observations of primitives being
executed. The context or state in which the human has performed each primitive is extracted from the observed
data, and is used by a nearest neighbor lookup process to find the past primitive execution whose context is most
similar to the current context. For example the puck's position and velocity when it crossed the centerline is often
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Fig. 3. The head of the cyber human contains two ”eyes,” each made up of a wide angle and narrow angle cameras on pan-tilt
mechanisms.

used as the index for a lookup. In this implementation a primitive is selected and then run to completion, before the
next primitive is selected and executed. In future implementations we plan to look at systems in which primitives
can run concurrently, and interrupt and override other primitives.

Critical events are used to segment the observed data and to decide when a specific primitive is being performed.
Critical events are usually rare occurrences. For example, the puck mostly travels in a straight line with a gradually
decreasing velocity. Critical events for the puck include collisions, in which the ball speed and direction are rapidly
changed. Using critical events, the raw data is segmented into the above primitives. In air hockey, the hit primitives
are parameterized by the incoming puck position and velocity (when it crossed the center line), the hit location,
the outgoing puck velocity and the target position. To determine the target of the hit, the puck's velocity vector
after the hit is made is observed and a physical model is used to determine where the puck would hit the back
wall if the opponent did not block it. This use of a physical model enables the learning agent to estimate the target
being attempted without the shot having to be completed. Theaccuracy of thephysical model can be critical in
producing useful training data. Other methods can be used to reduce the reliance on the physical model, such as
only considering shots that have actually hit the back wall without having hit any other walls or paddles.

The parameters for the hit primitives are the desired hit location, the puck's desired post-hit velocity, and the
target location. Currently these parameters are returned along with the single nearest neighbor as part of the selected
primitive. A future implementation will obtain the parameters by interpolating between parameters of previously
executed primitives of the selected type.

3.2 Finding the Right Paddle Motion

Once the primitive to perform has been decided upon, and the parameters are obtained, the agent must then figure
out how to move the paddle to accomplish the primitive. This can bedone in many ways. Three methods have been
tried in the virtual environment; a physical model, neural networks, and kernel regression [3].

The physical model contains a simulation algorithm and computes the required paddle movements to hit the
puck to a desired location with the desired output velocity. The computed movement is the minimum movement
needed to obtain the correct hit. Paddle velocity that is perpendicular to the normal of the paddle-puck collision
does not affect the puck's movement. This method ignores puck spin. Using the physical model produces extremely
accurate results but does not take into account the information obtained from the observation. Theaccuracy of the
physical model largely determines the success of this method. If a physical model is not available some other
method must be used.
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Fig. 4. Three hit primitives being performed by the virtual player: right, straight, and left.

For the neural network and kernel regression methods information is extracted from the captured data so as to
have the virtual player move the paddle the way that the human moved the paddle to make a shot. The observed
data is segmented into the hit primitives and a database is created that contains the following information:

Input:

– The XY location of the puck when it was hit.
– The velocity components of the puck when it was hit.
– The absolute velocity of the puck just after it is hit.
– The position on the back wall that the puck would hit if unobstructed.

Output:

– The paddle's velocity components at the time of the collision.
– The location of the paddle relative to the puck at the time of contact.

This information is used in a learning module that tells the agent the paddle's velocity components and relative
position that are needed to make the desired shot. The query to the learning module is the puck's velocity and
desired hit location, the desired velocity of the puck after it is hit, and the desired location to shoot for on the back
wall. The learning module then outputs the information needed by the virtual player to make the shot.

3.3 The Prepare and Multi-Shot Primitive

Prepare is the action that is performed by a player when the puck is on the other side of the centerline. In order
for the player agent to learn this behavior from the human player a database is created from the observed data that
contains the puck's and the human paddle's position and velocity components during the time when the puck is on
the other side of the centerline. Kernel regression of this data is used to determine what the virtual player will do
when the puck is on the other side of the centerline.

If the teacher did not make a hit for the incoming puck parameters the primitive selection query will return the
no-hit primitive. In this case something other then a hit must be performed. It may also be that the virtual player
attempts a shot but does not make it correctly and the puck does not return to the other side of the board. In these
situations the multi-shot primitive is performed. The prepare and multi-shot primitives give the player agent a more
human like appearance.

The learning modules for these primitives are queried at every time cycle during primitive execution and returns
the desired position and velocity of the paddle. The database for these primitives contains the velocity and position
of the puck, the position and velocity of the player's paddle, and the position and velocity of the opponent's
paddle. The position and velocity of the puck and the opponent's paddle are interpolated using kernel regression.
This primitive generates the desired paddle position and velocity for the observed state. Once the virtual player
starts executing these primitives, it will continue until the puck crosses the centerline.



6 Bentivegna and Atkeson

Fig. 5.The virtual marble maze environment.

4 Marble Maze

Primitive learning is also being explored in the marble maze environment in software, figure 5, and on hardware,
figure 6. In the marble maze game a player controls a marble through a maze by tilting the board that the marble is
rolling on. The board is tilted using two knobs. There are obstacles, in the form of holes, that the marble may fall
into, and walls. In both versions the time and the board and ball positions are recorded as a human plays the game.

As in the air hockey environment, primitives are extracted from the captured data using critical events. Once
again, a human designed the primitives and created an algorithm to find the primitives in the captured data. The
following primitives are currently being explored and are shown in figure 7:

– Roll Wall Stop: The ball rolls along a wall and stops when it hits another wall.
– Roll Off Wall: The ball rolls along a wall and then rolls off the end of the wall.
– Guide: The ball is rolled from one location to another without touching a wall.
– Roll From Wall: The ball hits, or is on, a wall and then is maneuvered off it.

Figure 8 shows how primitives can be performed to traverse part of the maze. These primitives are used in a process
similar to the one implemented in the air hockey environment is used.

4.1 Selecting the Appropriate Primitive

Following the same method as in the air hockey environment, a primitive selection module has been created that
uses the segmented primitive data to decide which primitive should be performed for a given state of the environ-
ment. This module uses the following input-output information:

Inputs:

– The XY ball position
– The ball's velocity components
– The board's angular position

Outputs:

– The primitive used under these conditions
– The ball's position at the end of the primitive
– The ball's velocity components at the end of the primitive

The primitive selection module first decides which primitive to perform. Once the primitive to use has been
decided upon, it then goes on to obtain the parameters needed for the performance of that primitive. This primitive
will continue to be performed until the ball has reached the end location, or the ball goes outside of abounding
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Fig. 6.The physical marble maze implementation.

box containing the start and end location, or too much time has elapsed. The primitive selection module will then
be queried for the next primitive to perform.

To select a primitive to use, the agent observes the position and velocity of the ball and position of the board
and uses this information as input to the primitive selection module. In our implementation the primitive is chosen
from a database using a nearest-neighbor approach. First the nearest data points to the query point are retrieved
from the database. These data points represent the observed primitives the human performed when in a state similar
to the observed state. If the human has performed different primitives in this area, the returned data points include
many types of primitives. From these returned points the module must decide on a single primitive to perform.
This is currently performed by choosing the primitive that occurs the most often near the query point.

4.2 Obtaining Primitive Parameters

As in the air hockey environment, after the primitive to use has been chosen, the parameters for that primitive
need to be determined. The parameters provide a subgoal, such as the end location and velocity of the ball, for the
primitive to be performed. Each data point in the database also contains the parameters that were used when that
primitive was performed. Only the data points that are the same as the chosen primitive and were performed near
the given location are used to compute the appropriate parameters. The parameters to use for the chosen primitive
are computed by locally weighting and combining the parameters of the chosen data points. Closer points receive
higher weights then more distant points. The selected primitive along with the computed parameters are sent to the
primitive performance module to control the low level actuators.
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Fig. 7.Primitives used in the marble-maze.            

Fig. 8.Primitives being performed in the marble-maze.

4.3 Primitive Performance

Now that the agent knows which primitive to perform and what parameters to use, it needs to know how the board
is to be moved in order to perform the primitive. An action generation module is created from the observed data
that provides the board movement needed to complete the chosen primitive. The module is queried for the needed
action at every time step during the primitive execution.

Primitive selection and parameter generation are performed using the global board state; the agent must know
what primitive to perform at the observed position. Primitive performance, on the other hand can be performed
using local information. In our implementation it is assumed that the robot has the same motion ability in the X
and Y direction. Primitives learned in one part of the board can be performed in other parts of the board. The input
to primitive performance can be local information such as the distance to the end of the primitive and the velocity
in relationship to the wall be rolled on.

This primitive selection module takes as input the parameters of the primitive that the agent would like to
execute and outputs the board movement necessary to successfully perform the primitive and produce the desired
output. Since the database was created from captured data the board movements generated are based on the move-
ments the human made in a similar situation. Kernel regression is used to obtain this information from databases
created from the observed data.

5 Results

The learning algorithms for virtual air hockey and the virtual marble maze are fully implemented. The virtual
air hockey player agent provides a fun and challenging opponent. We are currently devising ways to evaluate the
performance of the air hockey player agent in a quanitative way. In the marble maze environment, all the primitives,
except the guide primitive, are learned from the observed player. The guide primitive is difficult to perform on real
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Fig. 9.The performance of the virtual marble maze playing agent as the number of games observed is increased.

hardware with stiction. We are currently looking at ways in which it can be broken up into a combination of smaller
primitives, such as a land primitive in which the ball lands on a wall and a u-turn primitive in which the ball moves
constantly along one axis but changes direction in the other axis.

Figure 9 shows a graph of the performance of the marble maze. This graph compares the performance of
the player agent in comparison to the number of successful games it has observed. Performance is measured by
placing the ball in 15 locations and measuring how far the agent traverses the maze from these locations. The
distance traveled during the 15 trials are then added together. As can be seen by the graph, as the agent observes
more games its performance improves. The total maximum distance the maze can be can be traversed from these
locations is 859. As can be seen, the player agent must now learn further using other mechanisms such as learning
from practice.

The same learning algorithms are currently being adapted for use by the humanoid robot and the marble maze
playing agent in the hardware implementations. The humanoid air hockey environment has been set up and we have
demonstrated the humanoid's mobility to hit the puck. In the hardware marble maze environment, the computer
successfully controlled the board to traverse a marble through the entire maze. The method used was that of a
direct engineering approach. The environment was modeled and the servos were given parameters needed to move
the ball from one location to another. A human then input the motor and ball location waypoints. This manual
implementation has given us great insight into the primitives that may be needed by the hardware version of the
game.

6 Discussion

There is great deal of work still to do. This section discusses some of the issues that will be addressed soon or may
be addressed in the future.

6.1 How the Maze Differs From Air Hockey

In air hockey the primitives are indexed using an absolute position, the location on the board. In the marble maze
game we have indexed the primitives using a relative position, so as to support generalization. Whether air hockey
should use a relative position index, or the marble maze game should use an absolute position index, remains to be
explored.

In air hockey, obtaining the hit parameters and then using this information as a second query to find how
to make the hit may be less effective than looking up how to make the hit in a single query. However, the hit
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parameters such as target location serve as useful subgoals, and the agent can practice obtaining those subgoals
independently from learning from observation.

6.2 Function Approximators and Features

One issue is finding a good function approximator for the type and distribution of data we typically observe. The
number of points and the kernel function to use in kernel regression will be explored. A number of alternative
function approximators will be explored.

Other features may be added to the learning method to increase the performance of the agent as it plays the
games. The opponent's paddle position and/or velocity are not being considered when selecting a primitive in the
air hockey domain. The opponents movements may be significant in the way the human moves and should be taken
into account the when choosing a primitive.

In the two environments explored the state of the game is very simple. In a real game of air hockey the move-
ment of the opponent's body may be significant in determining what moves are made by a player. Discovering what
features are relevant or important can be very difficult. For example the head movement may not be important but
the eye movement could be very important.

Once the agents are performing at an acceptable level, other ways to learn the task will be explored, such as
using reinforcement learning. This will provide a method to compare with learning using primitives. Data can also
be captured as the agent attempts to play the game. This data can be parsed in real time for primitives that can
be added to the learning modules. Methods to give the air hockey virtual player more human-like movements will
also be explored.

6.3 Primitives

The choice of input and output parameters in the creation of the primitive performance modules greatly affects its
performance. The hit database, for example, was originally designed to output the needed position of the paddle
for a given position of the puck to perform a hit. Using this implementation the virtual player consistently made
poor shots. Changing to the use of a relative position of the puck and paddle in terms of an angle greatly improved
the hit performance. The parameters for the hit primitives are really subgoals for that part of the task. We can use
the notion of a target for a hit primitive to independently train the hit primitive. Other primitives do not need any
parameters other than the current state of the game, since their only objective is to imitate what the human did in
the next time step for the given state of the game, rather than achieve an external result. Future research will clarify
the role of subgoals in learning from observation.

There is more then one way to implement a primitive. As described earlier, the hit primitive was implemented
using a physical model, neural networks and kernel regression. The information needed to perform a primitive
can be learned from observed data or from its own trials. In these cases a number of different numerical learning
methods may be used.

It is important that the definition ofeach primitive support segmentation, selection, parameter generation, and
execution. If the primitive is poorly defined it may be difficult to find in the observed data and may be difficult to
segment from other primitives. The primitive should be defined in terms of critical events or certain environment
states. Primitives also need to have all the degrees of freedom to perform the task, but not extraneous degrees of
freedom. Defining primitives is an iterative process. Once a set of primitives are defined and tried out, they must
then be evaluated. Some primitives may be changed or deleted. New primitives may need to be added.

The virtual player will play like the teacher, making the same mistakes as the teacher, and may never discover
that there may be a better way to perform for an observed state. When a primitive is found in the training data,
the state under which it is performed is recorded. This information allows us to discover what the teacher actually
did. It may be that this was not what the teacher had planned to do. If the teacher consistently makes errors, it will
appear that the incorrect primitive should be performed.

6.4 Automatically Finding Primitives

In our research, humans using knowledge of the domain select the primitives to be used. The selected primitives
are basic and hard lines separate one primitive from another. But in reality this is not often be the case and learning
primitives is very difficult for the following reasons.

– Variability - a primitive may not be performed the same wayeach time.
– Blending/co-articulation - primitives may blend into each other. The line separating one primitive from another

may change over time. The way the primitive is performed may also change over time.
– Perceptual confusion - a primitive may be confused for a different one.
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7 Conclusions

Virtual and hardware versions of an air hockey game and a marble-maze game have been created that allow data
to be captured while the games are being played. Humans, using domain knowledge, select primitives to use and
create software needed to parse the captured data. Modules are then created that use this data to select when and
where primitives should be performed, the parameters needed for the performance of the primitives, and the low-
level movements needed during the actual performance of the primitive. The agent then uses these modules to
perform the task. A virtual air hockey player has learned a shot strategy, how to hit, and prepare from observing a
human. A virtual marble-maze playing agent has learned to traverse a maze in a similar manner.
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