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Abstract. This paper explores the idea to create complex human-like movements from movement primitives
based on nonlinear attractor dynamics. Each degree-of-freedom of a limb is assumed to have two
independent abilities to create movement, one through a discrete dynamic system, and one through a
rhythmic system. The discrete system creates point-to-point movements based on internal or external target
specifications. The rhythmic system can add an additional oscillatory movement relative to the current
position of the discrete system. In the present study, we develop appropriate dynamic systems that can
realize the above model, motivate the particular choice of the systems from a biological and engineering
point of view, and present simulation results of the performance of such movement primitives. The model
was implemented for a drumming task on a humanoid robot.

I ntroduction

When searching for a general framework of how to formalize the learning of coordinated movement, some of
the ideas developed in the middle of the 20th century still remain useful. At this time, theories from
optimization theory, in particular in the context of dynamic programming (Bellman, 1957; Dyer & McReynold,
1970), described the goal of learning control in learning a policy. A policy is formalized as a function that maps
the continuous state vector x of a control system and its environment, possibly in a time dependent way, to a
continuous control vector u:

u=T(x,a,t) (1)
The parameter vector a denotes the problem specific adjustable parameters in the policy Te—not unlike the

parameters in neural network learning. At the first glance, one might suspect that not much was gained by this
overly general formulation. However, given some cost criterion that can evaluate the quality of an actionu in a
particular state x, dynamic programming, and especially its modern relative, reinforcement learning, provide a
well founded set of algorithms of how to compute the policy 1t for complex nonlinear control problems.
Unfortunately, as already noted in Bellman's original work, learning of 1t becomes computationally intractable
for even moderately high dimensional state-action spaces. Although recent developments in reinforcement
learning increased the range of complexity that can be dealt with (e.g., [1]; [2]; [3]), it still seems that there is a
long if not impossible way to go to apply general policy learning to complex control problems.

In most robotics applications, the full complexity of learning a control policy is strongly reduced by
providing prior information about the policy. The most common priors are in terms of a desired trajectory,
[X4(t), X, ()], usually hand-crafted by the insights of a human expert. For instance, by using a PD controller, a

(explicitly time dependent) control policy can be written as:
u = n(x,a(t).t) = i{x,[x4 (). X4 (0] 1)

=K, (%4(t) = x) + K (%4 (t) = %)
For problems in which the desired trajectory is easily generated and in which the environment is static or fully
predictable, as in many industrial applications, such a shortcut through the problem of policy generation is
highly successful. However, since policies like in (2) are usually valid only in alocal vicinity of the time course
of the desired trajectory, they are not very flexible. When dealing with a dynamically changing environment in
which substantial and reactive modifications of control commands are required, one needs to modify
trajectories appropriately, or even generate entirely new tragjectories by generalizing from previously learned
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knowledge. In certain cases, it is possible to apply scaling laws in time and space to desired trajectories ([4];
[5]), but those can provide only limited flexibility, as similarly recognized in related theories in psychology
([6]). Thus, for general-purpose reactive movement, the “desired trajectory” approach seems to be too
restricted.

From the viewpoint of statistical learning, Equation (1) constitutes a nonlinear function approximation
problem. A typical approach to learning complex nonlinear functions is to compose them out of basis functions
of reduced complexity. The same line of thinking generalizes to learning policies: a complicated policy could
be learned from the combination of simpler (ideally globally valid) policies, i.e., policy primitives or movement
primitives, as for instance:

u=T(xa,t) = i T (x.a,.t) ?3)

Indeed, related ideas have been suggested in various fields of research, for instance in computational
neuroscience as Schema Theory ([7]) and in mobile robotics as behavior-based or reactive robotics ([8]). In
particular the latter approach also emphasized to remove the explicit time dependency of m, such that
complicated “clocking” and “reset clock” mechanisms could be avoided, and the combination of policy
primitives became simplified. Despite the successful application of policy primitives in the mobile robotics
domain, so far, it still remains unclear how to generate and combine those primitives in a principled and
autonomous way, and how such an approach generalizes to complex movement systems, like human arms and
legs.

Thus, a key research topic, both in biological and artificial motor control, revolves around the question of
movement primitives: what is a good set of primitives, how can they be formalized, how can they interact with
perceptual input, how can they be adjusted autonomously, how can they be combined task specifically, and
what is the origin of primitives? In order to address the first four of these questions, we suggest to resort to
some of the most basic ideas of dynamic systems theory. The two most elementary behaviors of a nonlinear
dynamic system are point attractive and limit cycle behaviors, paralleled by discrete and rhythmic movement in
motor control. Would it be possible to generate complex movement just out of these two basic elements? The
idea of using dynamic systems for movement generation is not new: motor pattern generators in neurobiol ogy
([9D), pattern generators for locomotion ([10]; [11]), potential field approaches for planning (e.g., [12]), and
more recently basis field approaches for limb movement ([13]) have been published. Additionally, work in the
dynamic systems approach in psychology ([14]; [15]) has emphasized the usefulness of autonomous nonlinear
differential equations to describe movement behavior. However, rarely have these ideas addressed both
rhythmic and discrete movement in one framework, task specific planning that can exploit both intrinsic (e.g.,
joint) coordinates and extrinsic (e.g., Cartesian) coordinate frames, and more general purpose behavior, in
particular for multi-joint arm movements. It isin these domains, that the present study offers a novel framework
of how movement primitives can be formalized and used, both in the context of biological research and robotics
research.

Programmable Pattern Generators

Using nonlinear dynamic systems as policy primitives is the most closely related to the original idea of motor
pattern generators (MPG) in neurobiology. MPGs are largely thought to be hardwired with only moderately
modifiable properties. In order to allow for the large flexibility of human limb control, the MPG concept needs
to be augmented by a component that can be adjusted task specifically, thus leading to programmable pattern
generators (PPG). Given a set of parameters a, a PPG realizes a policy primitive that implements a globally

stable attracting regime whose specifics are determined by the particular values of a.

We assume that the attractor landscape of PPGs represent desired kinematic state of a limb, e.g., positions,
velocities, and accelerations. This approach deviates from MPGs which are usually assumed to code motor
commands, and is strongly related to the idea developed in the context of “mirror laws’ by Buhler, Rizzi, and
Koditschek ([16]; [17]). In our current scheme, kinematic variables are converted to motor commands through
an inverse dynamics model and stabilized by low gain feedback control. The motivation for this approach is
largely inspired by data from neurobiology that demonstrated strong evidence for the representation of
kinematic trajectory plans in parietal cortex ([18]) and inverse dynamics models in the cerebellum ([19]; [20]).
Kinematic trajectory plans are equally backed up by the discovery of the principle of motor equivalence in



psychology (e.g., [21]), demonstrating that different limbs (e.g., fingers, arms, legs) can produce kinematically
similar patterns despite having very different dynamical properties; these findings are incompatible with direct
planning in motor command space. Kinematic trajectory plans, of course, are also well known in robotics from
the computed torque control schemes ([22]). From the view point of policy primitives, kinematic
representations are more advantageous than direct motor command coding since this allows for workspace
independent planning, and, importantly, for the possibility to superimpose PPGs. However, it should be noted
that a kinematic representation of policy primitives is not necessarily independent of dynamic properties of the
limb. Proprioceptive feedback can be used to modify the attractor landscape of a PPG in the same way as
perceptual information ([17]; [23]; [24]).

For malization of PPGs

In order to accommodate discrete and rhythmic movements, two kinds of PPGs are needed, a point attractive
PPG and a limit cycle PPG. Although it is possible to construct nonlinear differential equations that could
realize both these behaviors in one set of equations (e.g., [25]), for reasons of robustness, simplicity,
functionality, and biological realism, we chose an approach that separates these two regimes. Every degree-of-
freedom (DOF) of a limb is described by two variables, a rest position 6, and a superimposed oscillatory
position, 6., as shown in Figure 1. By moving the rest position, discrete motion is generated. The change of
rest position can be anchored in joint space or, by means of inverse kinematics transformations, in external
space. In contrast, the rhythmic movement is produced in joint space, relative to the rest position. This dual
strategy permits to exploit two different coordinate sysems: joint space, which is the most efficient for
rhythmic movement, and external (e.g., Cartesian) space, which is needed to reference a task to the external
world. For example, it is now possible to bounce a ball on a racket by producing an oscillatory up-and-down
movement in joint space, but using the discrete system to make sure the oscillatory movement remains under
the ball such that the task can be accomplished—this task actually motivated our current research ([26]).

Figure 1: Each degree-of-freedom of a limb has a rest state 00 and an oscillatory state Qr .

The Discrete PPG

Discrete movement is generated by a set of weakly nonlinear differential equations, closely related to the VITE
model by Bullock and Grossberg ([27]). The modeling strategy is to use first-order differential equations
(“leaky integrators’) as basis for the development—similar to abstract models of biological neurons—and to
augment these equations with nonlinear terms such that an attractor landscape is created that produces smooth
trajectory profiles between start and target states. In contrast to VITE, our dynamic system does not require
artificial resetting of certain states of the attractor model after each movement, as all states of the dynamic
system converge to their initial states after the movement terminates. Future work will address how to learn
such dynamical systems from unstructured networks—however, the scope of this paper is to demonstrate which
ingredients are needed in a dynamic network to produce the desired attractor landscapes. With muscle-based
actuation in mind, the following equations model the discrete PPG for an antagonistically actuated 1 DOF joint:
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where i [{1,2} and j (0{2,T, indicating the agonist and antagonist and their reciprocal influence, and where
[T denotes athreshold function that sets negative values to 0 while not affecting positive values. Equations (4)
build a difference vector Av, between the target position t; and the current position p, of each muscle and pass
this difference vector through afirst order differential equation, thus simulating an activation pattern in v, that
resembles signals observed in the primate cortex ([27]). Equations (5) accomplish a double smoothing of v,
with ¢, acting as an amplifier of the time constants a, and a,. Indeed, c, will alow adjusting the speed of the

movement, as shown below. C stands for the possibility to couple additional external signals to these
differential equation—for the purpose of this paper, C, can be assumed to be zero. The goal of the discrete PPG
is to achieve a trajectory with a roughly symmetric bell-shaped velocity profile, similar to those observed in
humans (e.g., [28]). At the stage of Equation (5), we interpret y, as a velocity signal which, due to the
exponential convergence of the first-order dynamics of Equations (4) and (5), displays a smooth but quite
asymmetric profile. Equation (6) provides a signal that can correct this behavior. Given appropriate parameters
a, and b, r very quickly “jumps’ to a value of aimost “1” and then decreases smoothly back to zero. This
signal can be used as a time constant adjustment in Equation (7): initially it reduces the time constant of this
equation and later it causes an increase. This effect exactly counteracts the initially fast and subsequent slow
phase of first-order differential equations. The signal z isinterpreted as an unscaled desired velocity signal that
is finally adjusted by the pure integrator in Equation (8). Figure 3 shows all the signals of the discrete PPG in a
0.7 s point-to-point movement of 1 rad distance. The time course of the signals should be compared with the
description above. For simplification, we assume that the current position and target of each muscle are
identical but just of the opposite sign.

Figure 2 shows the output of the discrete PPG for three different movement speeds, otherwise using the
same parameters as in Figure 3. With increasing movement speed, some transient overshoot of the target starts
to appear. This effect is quite similar as in human reaching movement and, for many movement tasks, does not
cause any problems.
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Figure 2: Position (solid lines) and velocity (dashed lines) traces for three different movement velocities, accomplished by
setting C, to 50, 100, and 150, respectively.

Extending the discrete PPG to multiple DOFs is easily accomplished by allocating one antagonistic PPG per
degree-of-freedom. c, is kept the same for all DOFs, while the target positions, of course, would vary for every
DOF. Such a scheme would produce a multi-joint PPG that generates a “joint-interpolation” policy primitive
([29]). The formulation of the discrete PPG in terms of directional signals (cf. Equation (4)) bears the advantage
that it is straightforward to use goals defined in Cartesian space ([30]). By using a Jacobian-based inverse
kinematics scheme, e.g., the pseudo-inverse or the Extended Jacobian method ([31]), it is possible to transform
a difference vector Av. in Cartesian space into the difference vector Av, in joint space for every DOF. This
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inverse kinematics-based difference vector would replace the first equation in Equation (4), after appropriately
adding a sign adjustment for the antagonistic formulation.
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Figure 3: Time course of discrete PPG for a 0.7 s movement. Parameter settings are: a, =a, =50, a, =a, =1, a, =0.01,
a, =0.08, and b=10. The target was t, = -t, =1, starting from an initial position 8, = 8,, = —6,, =0. The speed factor
was setto C, = 60.

The Rhythmic PPG

Using the same modeling strategy as in the previous section, a dynamic policy primitive can be created that
displays limit cycle behavior. The following equations are based on a half-centered oscillator model (i.e., two
mutually inhibitory units, Brown, 1914) suggested by Matsuoka (1985, 1987), and similarly employed in ([23];
[24]):
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Equations (9) are the equivalent of Equations (4): given an amplitude signal A, the difference between the
current position and the desired amplitude is calculated and passed through a first order differential equation.
Equations (10) are the original Matsuoka equations, except that we formulated them such that ¢, is interpreted
as a velocity signal instead of a position signal as in Matsuoka's original concept ([32]). Important in these
equations are the inhibitory coupling from the antagonistic unit, ¢, the coupling term to external signals, K;,
and the velocity factor c, that determines the frequency of the oscillator. The second equation in (10) can be
interpreted in terms of an adaptation of the activation ¢, as observed in biological units. Matsuoka ([33])
explains the motivation and stability properties of Equations (10) in detail. Equations (11) have a pure
integrator for the position 6, of the oscillator, equivalent to Equation (8), and combine the positive parts of
agonist and antagonist to result in the rhythmic position signal 8, . Figure 4 shows position and velocity of a 1
DOF oscillatory movement. Since the limit cycle oscillator codes velocity, position traces become quite smooth
and sinusoidal due to the integration of the more uneven velocity signal. It should be noted how quickly a
steady limit cycle oscillation is achieved starting from time t=0. This behavior is accomplished by “priming”
one unit of the rhythmic PPG with a small inhibitory (negative) signal through the coupling term K;, thus
breaking the symmetry in the equations. Such priming also allows determining whether the oscillation should
start in a positive direction or negative direction.
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Figure 4: Time course of the rhythmic PPG: a) position of oscillator, b) velocity of oscillator. Parameter settings were a; = 50,

a, =1, B=1, w=2, for a speed parameter of ¢, =5 and A=0.3.
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Figure 5: Multi-joint rhythmic PPG

A Multi-Joint Rhythmic PPG

In order to generate rhythmic movement with a multi-joint limb, it is necessary to couple the individual
rhythmic PPGs such that they remain phase-locked. Moreover, parameters have to be provided to adjust the
phase-offset between individual DOFs, as needed for certain rhythmic movements and also observed in human
behavior ([34]). These two requirements can be fulfilled by an appropriate coupling structure between the
individual oscillators, illustrated in Figure 5. In this oscillator network, we introduced a “ Reference Oscillator”
to which every DOF refers in order to adjust its phase offset, and only a unidirectional influence from the
reference oscillator to the DOFs exists. The connection scheme bears some important advantages over
aternatives, e.g., all-to-all coupling, or chain-like coupling. All-to-all coupling requires a highly redundant set
of phase offset parameters. for a7 DOF arm, 7 phase-offsets uniquely determine the oscillatory pattern—all-to-
all coupling would specify an overcomplete set of 72 =49 parameters. Chain-like coupling avoids this
problem, however, if one intermediate oscillator in the chain has small or no amplitude, the synchronization
process would be interrupted and not proceed to the end of the chain. The idea of a reference Figure 5 avoids
these problems. By means of the four connection weights, a range of different phase offsets can be achieved.
The phase information from the reference oscillator enters Equation (10) through the external coupling K

K = -Alwafo.] +waa.])
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where i indexes the DOF, and j the unit in an oscillator. y, =0 generates zero phase offset, while y, =1 will
result in an offset of Tt Intermediate offset values are achieved by intermediate values of y;; Figure 6provides
some examples. The coupling base weight w, is constant for all DOFs. The amplitude A adjusts the coupling

weights according to the desired amplitude of each DOF since the reference oscillator is chosen to have unit
amplitude. Because coupling from the reference oscillator to all DOFs is unidirectional, there is no interference
between the individual DOFs, thus resulting a robust oscillatory network.

" where y, 0[0,1]
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Figure 6: Realization of 0 (top), 72 (middle) and 1t (bottom) phase offsets in a 3 DOF rhythmic PPG. Parameters settings were
the same as in Figure 4; the coupling parameters were W, = 1, and all three oscillator amplitudes were chosen to be 1 rad.

Robot | mplementations

We implemented the discrete and rhythmic multi-joint PPGs on two robots, a 7 DOF Sarcos Dexterous Arm
and a 30 DOF Sarcos Humanoid robot. Desired position, velocity, and acceleration information was derived
from the states of the PPGs to realize a compute-torque controller. All necessary computations run in real-time
at 480Hz on a multiple processor VME bus operated by VxWorks. We realized arbitrary rhythmic “3-D
drawing” patterns, sequencing of point-to-point movements and rhythmic patterns like ball bouncing with a
racket. Figure 7a shows our humanoid robot in a drumming task. The robot used both arms to generate a regular
rhythm on a drum and a cymbal. The arms moved in 180-degree phase difference, primarily using the elbow
and wrist joints, although even the entire body was driven with oscillators for reasons of natural appearance.
The left arm hit the cymbal on beat 3, 5, and 7 based on an 8-beat pattern. The velocity zero crossings of the
left drum stick at the moment of impact triggered the discrete movement to the cymbal. Figure 7b shows a
trajectory piece of the left and the right elbow joint angles to illustrate the drumming pattern. Given the
independence of a discrete and rhythmic movement primitives, it is very easy to create the demonstrated
bimanual coordination without any problems to maintain a steady drumming rhythm.

Figure 7c illustrates how the robot drumming can also be synchronized with an external sound with zero
phase offset. We used another drum connected to a microphone to manually create an external rhythmic signal
that was added through the coupling constant K; in Equation (10). In Figure 7c, the external sound undergoes a
frequency shift, which is well tracked by the robot. This behavior is similar to the synchronization needed when
playing in amusic-band or orchestra.

Conclusion

The present study describes research towards generating flexible movement primitives out of nonlinear
dynamic attractor systems. We focused on motivating appropriate dynamic systems such that discrete and
rhythmic movements could be generated with high-dimensional movement systems. We also described some
implementations of our system of Programmable Pattern Generators on a complex anthropomorphic robot.
Clearly, the presented work |leaves open many questions that we raised at the beginning of this paper, as for
instance learning with such dynamic movement primitives. However, we believe that our work provides a first



step towards pursuing new methods of perceptuomotor control that will finally result in successful autonomous
and self-organizing machines and a better understanding of biology.
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